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ABSTRACT
In this paper we consider the impact of both missing data and mea-
surement errors on a longitudinal analysis of participation in higher
education in Australia. We develop a general method for handling
both discrete and continuous measurement errors that also allows
for the incorporation of missing values and random effects in both
binary and continuous response multilevel models. Measurement
errors are allowed to be mutually dependent and their distribution
may depend on further covariates. We show that our methodology
works via two simple simulation studies.We thenconsider the impact
of our measurement error assumptions on the analysis of the real
data set.
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1. Introduction

Measurement errors often occur in many of the variables used in the social and medical
sciences. These may arise from unreliable measuring instruments, or, for example, short
term fluctuations over time. It is reasonably well known that a failure to deal with mea-
surement errors can lead to biased inferences when the intention is to model data using
the ‘true’ but unknown values. Fuller [10] provides a comprehensive account and there is
a more recent literature ([4,6,20,22]) that includes Bayesian approaches. Buonaccorsi [2]
provides a comprehensive review of non-Bayesian methods. Muff et al. [18] provide a use-
ful overview as well as proposing a Bayesian model using a computationally fast Laplace
transformation.

Likewise, missing data values are endemic in observational data, and there is now a
considerable literature (see for example, [3]) on how to deal with these, especially when
missingness is in predictor variables and is not completely random. The case where data
contain both missing values and measurement errors, has received little attention, despite
being quite common. The aim of the present paper is to propose an integrated Bayesian
approach, usingMarkov ChainMonte Carlo (MCMC) estimation, to themodelling of such
data, where the model for the missing data is viewed as a special case of the model for
the measurement errors. Although in the example in this paper our approach focusses on
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generalised multilevel linear models, we indicate how our approach can easily be extended
tomodel multivariate data, heteroscedatistic measurement errors, andmodels that include
nonlinear and interaction terms.

We begin by describing briefly data where there are both measurement errors and
missing data and then outline the MCMC methodology required. We then carry out two
simulations to illustrate the approach on normal response and binary response models,
as well as a more detailed analysis of the effects of both missing data and measurement
errors on the modelling of our example data set. We end with a discussion in which we
also describe various extensions to more complex data structures.

2. Example data set: the longitudinal study of Australian youth

Our procedures will be applied to the ‘Longitudinal Study of Australian Youth’ (LSAY)
data set, a longitudinal study with up to 12 waves of data collection. This is a study that
was designed to track the pathways of young Australians as they move from school to
further study, work and other destinations. Data were collected on variables related to
education, training, work, financial matters, health, social activities and attitudes as well
as background family characteristics such as Socio Economic Status (SES). A description
of the variables is given by Cumming and Goldstein [7]. LSAY started in 1995 by sampling
Year 9 school students, with an average age 14.5 years, in Australian secondary schools
and subsequently is following them up every year on a further 11 occasions. Cumming
and Goldstein [7] studied year 9 predictors of the probability of being in full time or part
time education 6 years after the study start at wave 6 of data collection (a binary response),
when the students had a modal age of 20.5 years. The sample suffers attrition of just under
50% over this period, in addition to item missing data. The number of pupils available for
analysis, after excluding those students with no wave 6 information is 6901 and the data
has a 2 level structure with the pupils each belonging to one of 296 schools.

While Cumming and Goldstein [7] did account for attrition and missing data they did
not allow for test score unreliability. Such unreliability is a general feature of educational
tests and arises from several sources of variation including the choice (sampling) of test
questions, conditions of test administration and short term fluctuations within students.
Ecob and Goldstein [8] provide a detailed discussion. We describe the specific model for
these data in a later section but now build up the modelling approach in stages while
referring to earlier published work for many of the algorithm details.

3. Model specification

In an ideal scenario where we have no measurement errors and missing data then we will
fit a binary response model to our indicator of educational attendance at wave 6 and relate
this response to various predictor variables whilst also factoring in the 2 level structure via
school level random effects. Our finalmodel of interest (MOI) will therefore be of the form:

pij ∼ Bin(1, πij),

probit(πij) = β0 +
n∑

k=1

βkXkij + uj,
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uj ∼ N(0, σ 2
u ).

Here, we have deliberately chosen to use a probit link function as opposed to a logistic
regression since our modelling approach, that incorporates measurement errors and miss-
ing data, will be adapted from an approach used for normal response models using latent
variable approaches (see examples later).

With this in mind we begin by considering a simpler example of how one can incor-
porate measurement errors in predictor variables into statistical models more generally by
considering normal response models as the extension to other models will be straightfor-
ward.

So consider the linear regression model:

Y = Xβ + e (1)

e ∼ N(0, σ 2
e ).

In this scenario it makes sense to differentiate between the predictor variables that con-
tain measurement variables which we will label X1 and those that do not, X2. Here we
use capital letters to represent the true values and we have X = [X1 X2 Z] where for com-
plete generality we could include Z = f (X1, X2), thus allowing for interactions between
variables and nonlinear effects. The model (1) is therefore a standard model that relates a
normal response to the true values of a set of variables. As some of these true values are
not available due tomeasurement errorswe therefore also require notation for the observed
predictors. Thus corresponding to the true values, X1, we denote by x1 the observed val-
ues of the variables with measurement error. Although the variables in Z will also not be
observed, they are simply functions of the other true values and so thus we do not need a
corresponding z for their observed equivalents.

To complete the model we require therefore a measurement error distribution to relate
x1 to X1 and here we assume that information about the distribution of the measurement
errors is available and in particular their variability is known. For continuous variables we
assume therefore that the errors are jointly normally distributed with known variances.
It is possible in the Bayesian framework to extend the modelling in practice to allow the
measurement error variance to be unknown and use instead a prior distribution of possible
values but in practice this doesn’t addmuch to the analysis and often one prefers to answer
‘what if’ questions in terms of the size of the measurement errors as a sensitivity analysis.
For simplicity of expositionwe begin with the case of a single variable havingmeasurement
error. We write the measurement error component of our full model as

x1 = X1 + γ1 (2)

(
X1
γ1

)
∼ N

(
σ 2
X1
0 σ 2

γ

)
,

where we assume independent normal distributions for both the true values (X1) and the
measurement errors (γ1) and also assume that the measurement errors are independent
of the true values of all predictors. Such a formulation is known as ‘classical’ measure-
ment error modelling which is generally the approach used with observational data (see,
e.g. [18]).
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Wecan therefore use our twomodel components (1) and (2) to form the completemodel
for the data

p(Y , x1, X1, X2) = p(Y|x1, X1, X2)p(x1, X1, X2).

Since x1 = X1 + γ1 and we assume that γ1 is independent of X1, X2 and Y we can write
the first term as

p(Y|x1, X1, X2) = p(Y|X1, X2).

We can also decompose the second term as

p(x1, X1, X2) = p(x1|X1, X2)p(X1, X2) = p(x1|X1, X2)p(X1|X2)p(X2),

where again using the formula for x1 and assuming independence of γ1 and X2 we have

p(x1|X1, X2) = p(x1|X1).

So that we have

p(Y , x1, X1, X2) = p(x1|X1)p(X1|X2)p(Y|X1, X2)p(X2).

Since X2 are all known data we can drop the final term in the above function.
The above expression corresponds to model (3a)–(3c) below:
The three components can be written as the full model:

x1 = X1 + γ1, (3a)

X1 = X2α + γ2, (3b)

Y = Xβ + e, (3c)

γ1 ∼ N(0, σ 2
γ1), γ2 ∼ N(0, σ 2

γ2), e ∼ N(0, σ 2
e ).

We shall consider generalisations of our simple model in later sections.
As they stand (3a)–(3c) do not provide identifiability for the individual parameters. As

is commonly done, the measurement error variance σ 2
γ1

is therefore assumed known so
that (σ 2

γ2
, σ 2

e , α, β) are the parameters to be estimated. In our example data analysis we
carry out sensitivity analysis on themeasurement error variances using some assumed val-
ues derived from existing research, since little information is available for the actual data
themselves. To complete the Bayesian formulation uniform priors are included for each of
these four sets of parameters. In common with standard usage we define the reliability of
the observed variable x1 as R = σ 2

X1
/σ 2

x1 . Here we calculate σ 2
x1 directly from the observed

variable and then we can estimate σ 2
X1

= σ 2
x1 − σ 2

γ1 in other words the variability in the
observed response not explained by measurement error.

We assume normality for purposes of exposition, but other distributional assumptions
are possible with corresponding changes to the MCMC steps described. In particular we
shall later deal with the binary case.
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For amultilevelmodel the only change is that (3c)will incorporate randomeffects. Thus,
for a variance components model with a single random effect (3c) would become

Y = Xβ + u + e, u ∼ N(0, σ 2
u ) (3d)

and extra steps to sample the u, σ 2
u are inserted [19].

In some cases the distribution of the measurement errors may depend on other vari-
ables, some of which may be in the MOI. Denoting these by X4 and assuming that they are
measured without error, the term σ 2

γ1
becomes σ 2

γ1
D where D is a known (n × n) diagonal

scaling matrix with n the sample size. For example, if the measurement error variance is
different for males and females, say σ 2

em, σ 2
ef then if sample record j is for a male the jth

element of D would be σ 2
em and if female, σ 2

ef .

4. MCMC estimation for a continuous predictor

Consider first the step in our algorithm where we propose a new true value, say X1i, for
record i, where for simplicity we assume that random effects are already incorporated in
the response The joint log posterior fromEquations (3a), (3b) and (3c) is thus proportional
to the sum of the following components:

−0.5(x1i − X1i)
2

σ 2
γ1

, −0.5(X1i − XT
2iα)

2

σ 2
γ2

, −0.5(ỹi)2

σ 2
e

,

where ỹi = yi − Xiβ .
When sampling a new value of X1i we use a Metropolis step and for a proposal

distribution we suggest a form of independence sampler

p(X1i|x1i) ∼ N(x1iR, R(1 − R)σ 2
x1i), (4)

where R is the reliability defined above. Model (3) is similar to the formulation by Richard-
son and Gilks [20] where they have a ‘gold standard validation’ sample that provides the
information associated with (3a).

For the case where we have more than 1 variable with measurement error we can pro-
pose the set of values defined using Equation (3) for each variable separately or look at the
joint proposal distribution:

f (X1|x1) ∼ MVN(X1�
−1
x1 �X1 , �X1 − �X1�

−1
x1 �X1),

where�x1 , �X1 are, respectively, the covariancematrices for the observed and true values
(the multivariate analogues of σ 2

x1 and σ 2
X1
, respectively). Other MCMC steps for the MOI

(3c) are standard conjugate Gibbs sampling steps as are the steps for the parameters in
Equation (3b) as conditional on deriving the true predictor values the model is a standard
linear model.

In fact this model, with α = 0 in Equation (3b), that is, the model with measurement
errors being unrelated to other predictors, is essentially the existing implementation of
Goldstein et al. [15] based upon Browne et al. [1]. Here however they use a Gibbs rather
than Metropolis step for the X1i. We note, however, that the use of such a simplified
formulation is only really appropriate in the case when X1 and X2 are orthogonal.



6 H. GOLDSTEIN ET AL.

Where the MOI is a generalised linear model with the response as a binary, multi-
category or count we can use a latent normal model for (3c) (for MCMC implementations
for suchmodels withoutmeasurement errors see [13] for categorical responses and [14] for
count models). In these cases an extra sampling step is inserted that samples one or more
assumed underlying standard normal variates for each of the observed discrete values.

5. Misclassification errors

We have demonstrated in Section 4 an MCMC algorithm for estimating the true value
of a continuous predictor that is measured with error. We next consider binary predictor
variables where errors are often described as misclassifications rather than measurement
errors. We will then discuss briefly the extension to multicategory predictors.

Consider the case where a new true predictor variable X3 is binary with corresponding
observed value x3. We now rewrite model (3) as

p(x3 = a|X3 = b) = pab, for a, b = (0, 1), (5a)

X3 = f (X2α), (5b)

Y = Xβ + e, e ∼ N(0, σ 2
e ). (5c)

We shall choose f as the probit function for convenience to obtain a conditional nor-
mal distribution that therefore implies full multivariate normality, so that we can use the
steps described in Section 4. We assume that all four of the pab are known fixed values,
although again sensitivity analyses for different values can be carried out.Herewe nowhave
X = [X3 X2 Z3] where for complete generality, for example in order to fit interactions, we
include Z3 = f (X3, X2) and X2 are the variables that do not contain measurement errors
as before.

The probit function can be written as p(X3i = 1) = ∫ ∞
−X2iα

φ(t) dt = ∫ X2iα
−∞ φ(t) dt

where φ(t) is the standard normal distribution. We first sample, therefore, a set of latent
normal variables, X∗

3i, according to the current values of X3i, for example, for a value of
1 we sample from the upper tail of this standard normal distribution and for value 0, the
lower tail. Thus, we can now rewrite (5b) as the normal linear model

X∗
3i = X2iα + γ2i (5d)

so that we can update the α parameters in a standard MCMC step as for continuous pre-
dictors.We also note that here the γ2i ∼ N(0, 1), which is fixed by the probit function, and
so we do not have a variance parameter to estimate.

To update the X3i, we carry out a Metropolis step so that if the existing value is X3i = 0
we propose a new value X3i = 1 and vice versa. The joint likelihood contains the same
component for Equation (5c) as before in Equation (3c). For Equation (5a) with observed
value x3 = a and proposed true value X3 = b, the component is simply pab. For Equation
(5b) for proposed true value b,we evaluate the probit function at current parameter values
(α), using Equation (5d).

This can be readily extended to ordered categories and also unordered categories, using
appropriate latent normal transformations (see [13]).
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6. Measurement errors andmisclassification errors

For the case where there are both measurement errors and binary misclassification errors
we assume that these are independent of each other. It will also often be reasonable in
applications to assume that the binary misclassification errors are mutually independent,
as in the exposition below. If we denote the misclassification error variables by the true
values X3, the joint distribution can now be written as

p(Y , x1, X1, X2, x3, X3)

= p(Y|X1, X2, X3)p(x1|X1)p(x3|X3)p(X1|X2, X3)p(X3|X2)p(X2). (6)

Thus, when updating X1 we use the equivalent to Equation (3), namely

x1 = X1 + γ1, (7a)

X1 = X2α2 + X3α3 + γ2, (7b)

Y = Xβ + e. (7c)

When updating each variable in X3 we now have four components for the likelihood,
Equations (7b) and (7c) above and additionally:

p(x3 = a|X3 = b) = pab, for a, b ∈ (0, 1), (7d)

X3 = f (XT
2 α4). (7e)

In Equation (7e), for convenience, we may use a probit function for X3, with assumed
known values for the pab. We note that the decomposition (6) implies no dependence of
X3 on X1. Where the missclassification errors are not independent (7d) could be extended
to incorporate the joint distribution of several binary variables.

7. Incorporatingmissing data values

Goldstein et al. [12] present a Bayesian MCMC algorithm for fitting models with missing
covariate data values that extends the traditional joint modelling approach based upon
multiple imputation. We can write a simple model with missing data on covariates as
follows:

Y = Xβ + e, (8a)

X1 = X2α + γ2. (8b)

Here X1 now consists of those variables within X that have missing values and X2 those
that don’t. In the update step for the missing data, for each record where there are missing
values we propose a new set X1 using a proposal distribution based on f (X1|X2) and then
perform a Metropolis step. Thus the only real difference from the measurement error case
is that, as seen in Equation (3a), there is an additional component in the posterior forX1 as
we have an observed value x1. Where we have both variables with measurement errors and
missing values,X1 can include all variables that either havemeasurement errors or missing
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values, or both. Where a variable with measurement errors has missing data values these
are updated in the step for updating the missing values.

Formally, for a predictor variable with missing values, sayWj ∈ (X), we note that

f (X) = f (W|X−W)f (X−W) (9)

andwe have the additional step for themissing value conditional on the current true values.
The missing values are updated based upon the updated true values, using

Equations (8a) and (8b), and when updating a variable’s true values, any imputed (true)
missing values for this variable will be ignored. This is conveniently carried out by using
the current (imputed) value in both the numerator and denominator of the Metropolis
ratio so that it has no effect on the acceptance probability. In the simulations and example
below, we first carry out, for each data record, a Metropolis step jointly for all the variables
with measurement errors. Once the sampling for the true values has taken place the next
step carries out imputation where there are missing values, one variable and one record
at a time, conditioning on the current true values. This uses the algorithm described in
Goldstein et al. [12].

In what follows we assume [21] that data are missing completely at random (MCAR), or
missing at random (MAR). ByMAR ismeant that it is randomlymissing at least condition-
ally on all the observed values, that is the covariates and Y, where the latter conditioning
is implicit since the full likelihood (6) contains the response as well as the covariates. For
missing not at randomwemay be able to additionally condition on auxiliary variables, not
in the MOI, by incorporating them in Equation (8b).

8. Simulations

The first simulation study illustrates a normal responsemodel with amixture of continuous
measurement errors and misclassification errors.

Each simulated data set was generated as follows:

X0 = 1,

⎛
⎝X1

Z
X3

⎞
⎠ ∼ N

⎡
⎣0,

⎛
⎝ 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

⎞
⎠

⎤
⎦ , X2 =

{
0 if Z < 0
1 if Z ≥ 0

}
(10)

x1 = N(X1, 0.25), p01 = p10 = 0.2 to create x2 from X2.

The simulation model is

Y ∼ N(μ, 1), μ = X0 + X1 + X2 + X3. (11)

We fit themeasurement errormodel described in Equations (7a)–(7c) and (8a)–(8b) where
the MOI is

Yi = β0 + β1X1 + β2X2 + β3X3 + ei. (12)

A sample of 1000 such records is generated.
A burn in of 250 iterations followed by 250 stored iterationswas usedwith 100 simulated

data sets. The results are as follows in Table 1.
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Table 1. Measurement error simulation.

Estimate
(true value) No adjustment

Adjusted for
measurement and

misclassification errors

β0(1.0) 0.95 (0.01) 1.00 (0.01)
β1(1.0) 0.74 (0.01) 1.01 (0.01)
β2(1.0) 1.12 (0.01) 0.99 (0.01)
β3(1.0) 1.11 (0.01) 1.00 (0.01)
σ 2
e (1.0) 1.16 (0.02) 0.99 (0.02)

Notes: Hundred simulateddata sets frommodel (12). Between– simulation standard errors
in brackets. Reliability = 0.8. Burn in = 250, iterations = 250. Sample size 1000.

We see that biases are induced for all the predictors, including those without errors
if we do not adjust for measurement error but including the measurement errors and
misclassifications in the model removes these biases.

The second simulation study will consider the case of a binary response and includes
both continuous measurement errors and data MCAR. Each simulated data set was
generated as before, but with no misclassification errors:

X0 = 1,

⎛
⎝X1

Z
X3

⎞
⎠ ∼ N

⎡
⎣0,

⎛
⎝ 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

⎞
⎠

⎤
⎦ , X2 =

{
0 if Z < 0
1 if Z ≥ 0

}

x1 = N(X1, 0.25)

ForX1 andX2 20% of values were randomly assigned to bemissing, so that on average 36%
of records had at least one missing value.

The simulation model, omitting subscripts, is

Y ∼ N(μ, 1), μ = X0 + X1 + X2 + X3. (13)

For a binary response, the observed response Yobs is defined as

Yobs = 1 if Y > 0, Yobs = 0 if Y ≤ 0.

We fit themeasurement errormodel described in Equations (7a)–(7c) and (9b)–(9c) where
the MOI is now

E(Yobs,i) = πi, probit(πi) = β0 + β1X1i + β2X2i + β3X3i, (14)

where we have E(πi) = 0.74.
The number of simulated data sets is 200 and three sample sizes are used; 500, 1000 and

4000. The estimates are given in Table 2, along with the estimates resulting from making
no adjustment for measurement error where there is no missing data.

We see that biases are induced for all the predictors if we do not adjust for measurement
error, with no missing data, with a large average downward bias of 7% for a sample size
of 1000. The percentage bias of our procedure, averaged over the four fixed parameters, is
10.3% for a sample size of 500, 2.7% for a sample size of 1000 and 1.7% for a sample size
of 4000. We see, therefore, that where we have both missing data and measurement errors
there will remain biases for small samples. Further research into this would be welcome.
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Table 2. Measurement error simulation.

Estimate
(generating value)

Measurement
error, but with no
adjustment and no

missing data.
N = 1000

Adjusted for
measurement

errors and missing
data. N = 500

Adjusted for
measurement

errors and missing
data. N = 1000

Adjusted for
measurement

errors and missing
data. N = 4000

β0(1.0) 0.868 (0.006) 1.116 (0.011) 1.047 (0.010) 1.025 (0.006)
β1(1.0) 0.690 (0.004) 1.147 (0.014) 1.033 (0.012) 1.014 (0.007)
β2(1.0) 1.109 (0.010) 1.060 (0.013) 1.002 (0.014) 1.006 (0.009)
β3(1.0) 1.033 (0.005) 1.087 (0.008) 1.037 (0.009) 1.022 (0.005)
σ 2
e (1.0) 1 1 1 1

Notes: Two hundred simulated data sets from model (14). Between – simulation standard errors in brackets. Reliabil-
ity = 0.8. Burn in = 500, iterations = 500. Sample sizes denoted by N.

Table 3. LSAY data; prediction of the probability of HE participation adjusting for measurement error
(ME) with different reliabilities (R) in maths and reading scores, and missing data.

Estimate

Complete
cases, no ME
adjustment

Adjusting for
missing data

only

Adjusting for
missing data and
ME (R = 0.8)

Adjusting for
missing data and
ME (R = 0.7)

Intercept −0.946 (0.091) −1.010 (0.066) −1.197 (0.073) −1.311 (0.080)
Female (male) 0.055 (0.050) 0.051 (0.036) 0.061 (0.037) 0.057 (0.037)
Non-government school 0.202 (0.055) 0.221 (0.049) 0.217 (0.046) 0.219 (0.047)
Maths score year 9 0.499 (0.062) 0.504 (0.046) 0.654 (0.060) 0.753 (0.068)
Reading score year 9 0.235 (0.061) 0.275 (0.044) 0.339 (0.051) 0.390 (0.065)
Non-Australia country of birth
of mother (Australia)

0.186 (0.059) 0.183 (0.041) 0.183 (0.042) 0.180 (0.044)

Home language not English
(English)

0.412 (0.114) 0.452 (0.072) 0.469 (0.078) 0.485 (0.076)

SES ANU3 score father 0.487 (0.106) 0.438 (0.096) 0.366 (0.106) 0.286 (0.105)
SES ANU3 score mother 0.271 (0.136) 0.185 (0.120) 0.128 (0.112) 0.088 (0.122)
Level 2 variance 0.036 (0.015) 0.038 (0.009) 0.036 (0.011) 0.039 (0.010)

Notes: Probit link. Burn in = 500, iterations = 1000. Standard errors in brackets. Sample size = 6901, complete
cases = 3407.

9. An example using student participation in higher education

We now return to the data that we described in Section 3. Cumming and Goldstein [7]
analyse this data set but considered only the case ofmissing data and ignored possiblemea-
surement errors, using the algorithm described by Goldstein et al. [12] to obtain efficient
parameter estimates. The first two columns of results in Table 3 replicate these analy-
ses, pooling the two categories of non-Government school (Catholic, Private) that were
treated separately by Cumming and Goldstein [7] but in fact showed only a small and non-
significant difference and so have been combined in our analysis. The level 2 units are the
year 9 schools, and Table 3 lists the predictor variables with full details given by Cumming
and Goldstein [7]. Note that the scale of the SES measures has been divided by 100 and the
test scores divided by 10 to provide more significant figures for the coefficient estimates.

The specific MOI is a 2-level model with a simple random effect at the school level, and
is given by

pij ∼ bin(1, πij)

yij = probit(πij) = β0 +
8∑

k=1

βkXkij + uj + eij (15)
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uj ∼ N(0, σ 2
u ), eij ∼ N(0, 1),

where for clarity we now utilise the standard double subscript notation for a 2-level model,
with x1, X1, X2 defined as in Equations (3a)–(3c). Thus, in terms of our model X1
are the year 9 test scores having measurement errors and X2 consists of the remaining
predictors without measurement errors. The model contains no discrete covariates with
misclassification errors.

The year 9 test scores are each made up 20 binary items, but there appears to be no
information about the associated reliabilities. We have therefore carried out a sensitivity
analysis using values of 0.8 and 0.7 to study the effect of making adjustments for measure-
ment errors. These values are typical of those found in educational test scores (see, e.g.
[9, pp. 351–358]). The correlation between the observed test scores at year 9 is approxi-
mately 0.5 and where the true correlation is zero this becomes the correlation between the
measurement errors, and can be treated as an upper bound, and we use this value in our
analysis. We have also fitted the model assuming a correlation of 0.25 between the mea-
surement errors. The parameter estimates and their standard errors are very similar, as are
the standard errors, so that the choice of correlation value is not crucial.

In the final two columns of Table 3 we show the results of adjusting for these reliabil-
ities. We note first, that the principal gain in efficiency lies in moving from a complete
case analysis to one that uses the full sample with missing data and in fact the additional
adjustment for measurement errors generally increases the standard error estimates. The
actual parameter estimates, apart from SES, do not change very much here. There is little
change in any of the parameter estimates, except as expected, for the test score coefficients
but also for SES, when moving from a model with a reliability of 0.8 to one of 0.7. For the
SES of the mother this is reduced considerably moving from the complete case analysis
to that assuming a reliability of 0.7 and adjusting for missing values, where the estimate is
no longer statistically significant at 5%. Interestingly, the estimates for the other covariates
associated with the response, appear relatively unaffected by either adjusting for missing-
ness or measurement error. The sensitivity of SES effects to measurement error adjustment
is also found in other studies [9,11] and generally reduces the effects associated with SES. It
isworth pointing out that these SES effects are conditional on year 9 test scores and these are
themselves associatedwith SES. Since we do not have good estimates for the reliabilities, we
cannot be very precise about the ‘true’ effects for SES. Further analyses exploring these data
are currently under consideration. It does seem reasonable, however, to conclude that the
coefficients for the remaining variables other than the test scores, are relatively unaffected
by our adjustments.

In Cumming andGoldstein [7] it was concluded that the principal effect of adjusting for
missing data was a gain in efficiency, with a small increase in the estimate of the difference
between Government and non-Government schools, so that there were no important pol-
icy implications. Adjusting additionally for measurement error, however, shows a marked
reduction in the SES effects and this would seem to have more important implications for
policy. As the debate in Feinstein et al. [9] shows, in the UK the effect of SES on children’s
performance is a source of policy discussions. For example, if SES is found to be less ‘impor-
tant’ as a result of improvedmodelling that takes account of measurement error, this would
seem to have important implications for resource allocation policies. In our example and
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also in the data used in Feinstein et al. [9] there were no good estimates of the sizes of mea-
surement error variances and this suggests that more effort should routinely be devoted to
obtaining good estimates for these.

10. Discussion

There has long been an awareness of the importance of taking account of measurement
errors in observed data, but this is not a feature that is generally available in many software
packages. One reason for this may be the complexity associated with available adjustment
procedures, typically moment-based ones. There has also been an awareness of the need
to deal with missing data values, with rather more software available. In the present paper
we have presented a fully Bayesian MCMC algorithm, currently using routines written in
Matlab [16], and to be incorporated into the StatJR software [5], that allows adjustments
for both measurement errors and missing data. We demonstrate through simulations how
our procedures remove biases associated with a failure to account for measurement errors
and also how we can simultaneously adjust for measurement errors and missing data. We
also describe how it can be used for quite general model structures, including multilevel
generalised linear models. A note of caution is needed where we have both measurement
errors and missing data where our simulations show that with small sample sizes positive
biases may be induced in the parameter estimates. We also, in our example, point to the
substantive importance of adjusting for measurement errors, where the low reliability of
some predictor variables can have large effects on the resulting estimates, at least in the
case of educational data, and we would surmise in other areas too.

There are a number of relatively straightforward extensions to the models proposed.
In addition to the implicit latent normal transformations for non-normal variables, we

may wish to formulate the additive measurement error component of the joint model
(3a) in terms of a transformed variable. Thus, for example, if the measurement error was
multiplicative, we could then express (3a) in additive form by writing (3a)–(3c) as

x1 = X1eγ1 , log(x1) = log(X1) + γ1, (16a)

X1 = X2α + γ2, (16b)

Y = Xβ + e (16c)

γ1 ∼ N(0, σ 2
γ1

), γ2 ∼ N(0, σ 2
γ2

), e ∼ N(0, σ 2
e ),

where σ 2
γ1

is assumed known or derived from a known value of the variance of eγ1 . The
formulation (16a) may be useful for skewed data such as income where a transformation
may also help to ensure normality. We may also wish to use transformed values of X1 in
Equations (16b) or (16c) or both.We could also choose, for example, a gamma distribution
for γ1 with corresponding modifications to the likelihood and this would be a useful area
for further research.

As in the case of jointly modelling variables with missing values we also can introduce
auxiliary variables, say X3, into Equation (3b) to give

X1 = X2α2 + X3α3 + γ2. (17)

This allows us to deal with the case where, for example, X1 depends on such auxiliary
variables that are not in the MOI, whereas the X2 are in the MOI (see also [17]).
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As we showed in our example multilevel models, including those with cross classifica-
tions and multiple memberships, are readily incorporated by the addition of the relevant
random effects into the MOI (3c), together with the corresponding parameter sampling
steps. In fact the example application in Section 8 includes random effects.

For multivariate models (3c) becomes a multivariate model that is updated accordingly.
Goldstein ([19], chapter 6) discusses the steps involved. Structural equation models can
also be incorporated ([19], chapter 8).

Finally, in our example we illustrate the implications of properly allowing for measure-
ment errors. We also highlight the issue of providing good estimates for the distribution
of measurement errors, notably the variance. Often, such estimates are known only very
approximately and one possibility is to use an informative prior (which we have not inves-
tigated here) or as we have done in our example, carried out a sensitivity analysis over a
plausible range of values. This highlights those parameter estimates that were relatively
unaffected by our adjustment procedures. Ecob and Goldstein [8] explore a number of
approaches to the estimation of measurement error distributions, and this is an important
area for further work.
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